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Communication 

 

Spine – Executing Protocols on Network Coprocessors 

The emergence of fast, cheap embedded processors presents the opportunity to execute code 
directly on the network interface.  We are developing an extensible execution environment, 
called SPINE that enables applications to compute directly on the network interface.  This 
structure allows network-oriented applications to communicate with other applications executing 
on the host CPU, peer devices, and remote nodes with low latency and high efficiency. 

Many I/O intensive applications such as multimedia client, file servers, host based IP routers 
often move large amounts of data between devices, and therefore place high I/O demands on 
both the host operating system and the underlying I/O subsystem.  Although technology trends 
point to continued increases in link bandwidth, processor speed, and disk capacity the lagging 
performance improvements and scalability of I/O busses is increasingly becoming apparent for 
I/O intensive applications.  This performance gap exists because recent improvements in 
workstation performance have not been balanced by similar improvements in I/O performance. 
The exponential growth of processor speed relative to the rest of the I/O system, though, presents 
the opportunity for application-specific processing to occur directly on intelligent I/O devices. 
Several network interface cards, such as the Myricom’s LANai, Alteon’s ACEnic, and I2O 
systems, provide the infrastructure to compute on the device itself.  With the technology trend of 
cheap, fast embedded processors (e.g., StrongARM, PowerPC, MIPS) used by intelligent 
network interface cards, the challenge is not so much in the hardware design as in a redesign of 
the software architecture needed to match the capabilities of the raw hardware.  

We are working to move application-specific functionality directly onto the network interface, 
and thereby reduce I/O related data and control transfers to the host system to improve overall 
system performance.  The resulting ensemble of host CPUs and device processors forms a 
potentially large distributed system. 

In the context of our work, we are exploring how to program such a system at two levels.  At one 
level, we are investigating how to migrate application functionality onto the network interface. 
Our approach is empirical:  we take a monolithic application and migrate its I/O specific 
functionality into a number of device extensions.  An extension is code that is logically part of 
the application, but runs directly on the network interface.  At the next level, we are defining the 
operating systems interfaces that enable applications to compute directly on an intelligent 
network interface.  Our operating system services rely on two technologies.  First, applications 
and extensions communicate via a message-passing model based on Active Messages.  Second, 
the extensions run in a safe execution environment, called SPINE, that is derived from the SPIN 
operating system. 

Applications that will benefit from this software architecture range from those that perform 
streaming I/O (e.g., multimedia clients/servers and file-servers), host based IP routers, cluster 
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based storage management (e.g., Petal), to support for packet filtering (e.g., Lazy Receive 
Processing).  

SPINE offers developers a software architecture for the following three features that are key to 
efficiently implement I/O intensive applications: 

Device-to-device transfers.  By avoiding extra copies of data, we can significantly reduce 
bandwidth requirements in and out of host memory as well as halving bandwidth over a shared 
bus, such as PCI.  Additionally, intelligent devices can avoid unnecessary control transfers to the 
host system as they can process the data before transferring it to a peer device.  Techniques, such 
as SPLICE, have been introduced to emulate the device-to-device transfer.  

Host/Device protocol partitioning.  Low-level protocol support for application-specific 
multicast, packet filtering (e.g., DPF) and quality of service (e.g., Lazy Receive Processing) has 
shown to significantly improve system performance.  

Device-level memory management.  An important performance aspect of a network system is 
the ability to transfer directly between the network interface and the application buffers.  This 
type of support has been investigated by various projects (e.g., UTLB, AMII, and UNET/MM).  

Using SPINE, we have demonstrated that intelligent devices make it possible to implement 
application-specific functionality inside the network interface.  Although hardware designs using 
a "front-end" I/O processors are not new, they traditionally have been relegated to special 
purpose machines (e.g., Auspex NFS server), mainframes (e.g., IBM 390 with channel 
controllers), or supercomputer designs (e.g., Cray Y-MP).  

We believe that current trends will continue to favor the split style of design reflected in SPINE. 
Two technologies though could challenge the soundness of the SPINE approach.  First, I/O 
functions could become integrated into the core of mainstream CPUs -- an unlikely event given 
pressures for cache capacity.  Second, a very low latency standard interconnect could become 
available.  However, given that I/O interconnects by their very nature must be both open and 
enduring, we believe these non-technical forces hinder growth of I/O performance more than 
anything will.  

Our two example applications show that many extensions are viable even with an incredibly slow 
I/O processor.  Based on our experience with the LANai, we believe that more aggressive 
processor and hardware structures would have a large positive impact on performance.  For 
example, hardware FIFOs could eliminate much of the coordination overhead in our current 
system.  A faster clock rate alone would significantly improve the Active Message event 
dispatch rate as well.  We expect that a system using a current high-end I/O processor (clocked at 
roughly 250 MHz and with a cache size of 16KB) could improve performance by a factor of five 
over our current system.  

As embedded processors continue to increase in power relative to I/O rates, the number of 
extensions that are possible will greatly increase.  For example, having several megabytes of 
memory on the device enables NFS and HTTP caching extensions.  A vector unit would allow 

 2



  

many multimedia extensions.  A faster CPU would allow the use of a virtual machine interpreter, 
enabling transparent execution of extensions regardless of the instruction set. 

 

Next Generation Network Protocols -- Ipv6/Ipv4 

IPv6 is a new version of the internetworking protocol designed to address the scalability and 
service shortcomings of the current standard, IPv4.  Unfortunately, IPv4 and IPv6 are not 
directly compatible, so programs and systems designed to one standard can not communicate 
with those designed to the other. IPv4 systems, however, are ubiquitous and are not about to go 
away "over night" as the IPv6 systems are rolled in.  Consequently, it is necessary to develop 
smooth transition mechanisms that enable applications to continue working while the network is 
being upgraded.  In this paper we present the design and implementation of a transparent 
transition service that translates packet headers as they cross between IPv4 and IPv6 networks.  
While several such transition mechanisms have been proposed, ours is the first actual 
implementation.  As a result, we are able to demonstrate and measure a working system, and 
report on the complexities involved in building and deploying such a system. 

The current internetworking protocol, IPv4, eventually will be unable to adequately support 
additional nodes or the requirements of new applications.  IPv6 is a new network protocol that 
features improved scalability and routing, security, ease-of-configuration, and higher 
performance compared to IPv4.  Unfortunately, IPv6 is incompatible with IPv4 and to use the 
new protocol will require changes to the software in every networked device.  IPv4 systems, 
however, are ubiquitous and are not about to go away "over night" as the IPv6 systems are rolled 
in.  Consequently, it is necessary to develop transition mechanisms that enable applications to 
continue working while the hosts and networks are being upgraded.  One suggested strategy is to 
translate IP headers as they cross between IPv4 and IPv6 networks.  The requirement of header 
translation is to remain transparent to applications and the network.  

In this paper we present two variations of IPv6/IPv4 translators that address these difficulties. 
The first variation uses special IPv6 addresses to easily translate packets transparently for all 
applications.  Unfortunately, these special IPv6 addresses also require IPv6 routers to contain 
special routes to them, which is considered to be a bad idea because it creates more state for the 
router to maintain.  The second variation maintains an explicit mapping between IPv4 and IPv6 
addresses, and is therefore able to use standard IPv6 addresses that do not require any special 
treatment by IPv6 routers.  Its drawback is that IP-addresses embedded in some applications' data 
stream, such as FTP, must be updated as well for the translation to be completely transparent.  

We have built an IPv6/IPv4 network address and protocol translator as a device driver running in 
the Windows NT operating system.  Our test environment consists of the translator as a gateway 
between IPv6 and IPv4 hosts connected to separate Ethernet segments, and it incurs little 
performance overhead.  Between a pair of IPv6 and IPv4 nodes communicating via the 
translator, we have measured TCP bandwidth of 7210 Kbytes/second and roundtrip packet 
latencies of 424 microseconds over 100Mbit/second Ethernet links. 
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We have described the design and implementation of an IPv6/IPv4 network address and protocol 
translator, and briefly compared pros and cons of stateless vs. stateful translation.  Our work 
subsumes both the stateless SIIT design and the stateful design.  Despite the limitations of 
translation (e.g., loss of information) we believe that a translator can adequately fulfill the role of 
a short-term transition aid from IPv4 to IPv6, since it supports the majority of Internet traffic 
(HTTP, FTP, sendmail). 

Based on our experience we conclude that an IPv6/IPv4 network address and protocol translator 
is complementary to the AIIH approach in transitioning from IPv4 to IPv6.  In particular, we 
believe that it will be a valuable tool to developers porting applications from IPv4 to IPv6. For 
instance, a server application ported to IPv6 can be tested without having to port the client as 
well. 

For more information about the IPv6/IPv4 translator, performance, and source availability please 
visit our web page at: www.cs.washington.edu/research/networking/napt  

 

 

Security Architectures 
 

Security Services for Extensible Platforms 

 

Extensible systems, such as Java or the SPIN extensible operating system, allow for units of 
code, or extensions, to be added to a running system in almost arbitrary fashion.  Extensions 
closely interact through low-latency but type-safe interfaces to form a tightly integrated system. 
As extensions can come from arbitrary sources, not all of whom can be trusted to conform to an 
organization’s security policy, such structuring raises the question of how security constraints are 
enforced in an extensible system.  In this paper, we present an access control mechanism for 
extensible systems to address this problem.  Our access control mechanism decomposes access 
control into a policy-neutral enforcement manager and a security policy manager, and it is 
transparent to extensions in the absence of security violations.  It structures the system into 
protection domains, enforces protection domains through access control checks, and performs 
auditing of system operations.  The access control mechanism works by inspecting extensions for 
their types and operations to determine which abstractions require protection and by redirecting 
procedure or method invocations to inject access control operations into the system.  We 
describe the design of this access control mechanism, present an implementation within the SPIN 
extensible operating system, and provide a qualitative as well as quantitative evaluation of the 
mechanism. 

Extensible systems promise more power and flexibility than traditional systems and enable new 
applications such as smart clients or active networks.  They are best characterized by their 
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support for dynamically com-posing units of code, called extensions in this paper.  In these 
systems, extensions can be added to a running system in almost arbitrary fashion, and they 
interact through low-latency but type-safe interfaces with each other.  We use the term 
“interface” in this paper to simply denote the types and operations exported by an extension; 
interfaces may declare types but are not, as in Java, type declarations themselves.  Extensions 
and the core system services are typically collocated within the same address space and form a 
tightly integrated system.  Consequently, extensible systems differ fundamentally from 
conventional systems, such as Unix, which rely on processes executing under the control of a 
privileged kernel. 

As a result of this structuring, system security becomes an important challenge, and access 
control becomes a fundamental requirement for the success of extensible systems.  Since system 
security is customarily ex-pressed through protection domains, an access control mechanism 
should —structure the system into protection domains (which are an orthogonal concept to 
conventional address spaces,  -- enforce these domains through access control checks, and  -- 
support auditing of system operations.  Furthermore, an access control mechanism must address 
the fact that extensions often originate from other networked computers and are not trusted, yet 
execute as an integral part of an extensible system and interact closely with other extensions.  In 
this paper, we present an access control mechanism for extensible systems that meets the above 
requirements.  We build on the idea of separating policy and enforcement first explored by the 
distributed trusted operating system (DTOS) effort and introduce a mechanism that not only 
separates policy from enforcement, but also separates access control from the actual functionality 
of the system.  The access control mechanism is based on a simple yet powerful model for the 
interaction between a policy-neutral enforcement manager and a given security policy, and it is 
transparent to extensions and the core system services in the absence of security violations. 

Our access control mechanism works by inspecting extensions for their types and operations to 
determine which abstractions require protection and by redirecting procedure or method 
invocations to inject access control operations into the system.  The access control mechanism 
provides three types of access control operations, which are expressed in terms of security 
identifiers, representing privilege, and permissions, representing the right to perform an 
operation.  The operations are (1) explicit protection domain transfers to allow for a controlled 
change of privilege, (2) access checks to limit which procedures or methods can be invoked and 
which objects can be passed, and (3) auditing to provide a trace of system operations.  The 
access control mechanism works at the granularity of individual procedures or methods and 
provides precise control over extensions and the core system services alike. 

Our access control mechanism is based on the following three assumptions.  First, because it is a 
software-only mechanism, it assumes that the code in an extensible system is safe, that is, that all 
code respects the declared interfaces and preserves referential integrity.  Second, because our 
access control mechanism imposes access control operations on procedures and methods, it 
assumes that resources that need to be protected rely on encapsulation to hide their internal state. 
Finally, because our access control mechanism injects access control operations into an 
extensible system, it assumes the existence of some mechanism for binary interposition, such as 
the ability to dynamically patch object jump tables.  The main contributions of this paper are 
twofold.  First, based on the observation that extensible systems differ fundamentally from 
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conventional systems, we identify the specific goals for providing effective access control in 
extensible systems.  Second, we present an access control mechanism that meets these goals by 
separating access control policy, enforcement, and functionality and which relies on a simple yet 
powerful model for their interaction. 

Access control and its enforcement are but one aspect of the overall security of an extensible 
system.  Other important issues, such as the specification of security policies or the expression 
and transfer of credentials for extensions, are only touched upon or not discussed at all in this 
paper.  Furthermore, we assume the existence of some means, such as digital signatures, for 
authenticating both extensions and users.  These issues are orthogonal to access control, and we 
believe that our access control mechanism can serve as a solid foundation for future work on 
other aspects of security in extensible systems. 

Extensible systems, such as Java or the SPIN extensible operating system, have a different 
overall structure from conventional systems, such as Unix, because of their ability to 
dynamically compose units of code, or extensions.  Extensions and the core services in an 
extensible system are typically collocated within the same address space and form a tightly 
integrated system, easily leading to more complex interactions between the different components 
than those in conventional systems.  Since extensions generally cannot be trusted to conform to 
an organization’s security policy, access control becomes a fundamental requirement for the 
success of extensible systems. 

To protect extensions and the core services alike, access control for extensible systems needs to 
impose additional structure onto an extensible system.  At the same time, it should only impose 
as much structure as is strictly necessary to preserve the advantages of extensible systems.  
Based on this realization, we have identified four goals to guide the design of an access control 
mechanism for extensible systems: (1) separate access control and functionality, (2) separate 
policy and enforcement, (3) use a simple yet expressive model, and (4) enforce transparently. 

We have presented an access control mechanism for extensible systems that directly addresses 
these goals.  Our access control mechanism separates access control and functionality by 
inspecting extensions for their types and operations to determine which abstractions require 
protection and by redirecting individual procedure or method invocations to inject access control 
operations into the system.  It separates policy and enforcement by breaking up access control 
into a security policy manager, which makes the actual access decisions, and a policy-neutral 
enforcement manager, which enforces these decisions in the extensible system.  It uses a simple 
yet expressive model that supports protection domain transfers to allow for a controlled change 
of privilege, access checks to limit which procedures or methods can be invoked and which 
objects can be passed, and auditing to provide a trace of system operations.  Finally, it enforces 
transparently, as long as no violations of the security policy occur; extensions are notified of 
security faults so that they can implement their own failure model. 

The implementation of our access control mechanism within the SPIN extensible operating 
system is simple and, even though the latency of individual access control operations can be 
noticeable, shows good end-to-end performance for a Web server benchmark.  Based on our 
results, we predict that most systems will see a very small overhead for access control and thus 
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consider our access control mechanism an effective solution for access control in extensible 
systems. 

 

 

Security for a Distributed Virtual Machine 

Modern virtual machines, such as Java and Inferno, are emerging as network computing 
platforms.  While today’s virtual machines provide higher-level abstractions and more 
sophisticated services than their predecessors, and while they have migrated from dedicated 
mainframes to heterogeneous networked computers, their architecture has essentially remained 
intact.  State-of-the-art virtual machines are still monolithic, that is, all system components reside 
on the same host and are replicated among all clients in an organization.  This crude replication 
of services among clients creates problems of security, manageability, performance and 
scalability.  We propose a distributed architecture for virtual machines based on distributed 
service components.  In our proposed system, services that control security, resource 
management, and code optimization are factored out of clients and reside in enterprise-wide 
network servers.  The services produce self-certifying, self-regulating, self-optimizing programs 
via binary rewriting.  We are currently building a Java virtual machine based on this architecture. 
We argue that distributed virtual machine architectures enable higher integrity, manageability, 
performance and scalability than monolithic virtual machines where all components reside on all 
clients. 

Virtual machines have evolved significantly in the last two decades to emerge as the prevailing 
network computing platform.  Modern virtual machines offer much more sophisticated services 
compared to their predecessors [IBMVM86].  Today’s virtual machines (VMs) provide safety 
guarantees, dynamic extensibility, on-the-fly compilation, configurable security policies, and 
resource management facilities.  Research trends indicate that these services will only grow in 
time.  Further, modern virtual machines are deployed in organizations with hundreds or 
thousands of hosts, in contrast with early systems that were typically confined to a few dedicated 
mainframes per enterprise.  Nevertheless, the service architecture of virtual machines has 
remained static, even though virtual machine services have become much more numerous and 
complex, and even though the deployment style of VM systems has changed drastically.  
Today’s virtual machines still rely on a monolithic architecture, in which all service components 
reside on the host computer, and are replicated across all virtual machines in an organization.  
Consequently, today’s virtual machine systems suffer from security problems, are difficult to 
manage, impose high resource requirements and do not scale to large numbers of hosts.  The 
problems facing modern virtual machines stem from their monolithic architecture, which has 
resulted in virtual machines that are not modular, lack protection boundaries between 
components, and exhibit complex inter-component interactions.  These attributes of monolithic 
systems combine to create problems of integrity, scalability, performance and manageability, 
which can be summarized as follows:   
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Integrity.  Since policy specification and security enforcement are performed on the same host 
which runs potentially not trusted applications, there is risk of long-term security compromises 
resulting from one-time security holes.  Further lack of address space boundaries between virtual 
machine components means that a flaw in a single component of the virtual machine places the 
entire machine at risk.  Consequently, assuring the correctness of VM installations is a daunting 
task because the entire VM code base needs to be examined.  The situation is analogous to the 
days before firewalls, when every networked host in an organization had to be protected against 
all bad packets that it might receive.  The emergence of firewalls proved that it was simpler and 
more secure to concentrate functionality in a single packet-filter than to secure every host in an 
organization.  The virtual machine situation today is identical, except that the services are 
considerably more complex than packet filtering. 

Manageability.  Since each virtual machine is a completely independent entity, there is no 
central point of control in an enterprise.  There are no transparent and comprehensive techniques 
for timely distribution of security upgrades, capturing audit trails, and pruning a network of 
rogue applications.  To make matters worse, current system administration tools (e.g. rdist), push 
technologies (e.g., Marimba) and Internet protocols [RFC1157] do not support transparent 
management of virtual machines. 

Performance and Scalability.  Virtual machine services, such as just-in-time compilation and 
verification, have substantial processing and memory requirements that can reduce overall 
application performance.  Further, high resource requirements render virtual machines unsuitable 
for small, embedded hosts incapable of supporting all requisite components of a virtual machine. 

We are building a computing infrastructure for enterprises that takes advantage of the portability 
and uniformity of virtual machines, while also providing secure, manageable, efficient and 
scalable services.  The distributed virtual machine architecture achieves these goals since it 
reduces the installed and trusted computing base, moves critical functionality out of clients, and 
provides a point of network-wide control for the system administrator or the IT manager.  
Structuring the virtual machine services around binary rewriting makes them applicable even to 
existing monolithic clients, and provides a gradual conversion path from monolithic to 
distributed virtual machines. 

 

Scalable Services for Networked Clusters 

 

Porcupine 

 

The Porcupine mail server, a cluster-based mail server, can handle up to 1 billion messages a 
day.  Unlike common large-scale mail servers deployed today, there is no role separation among 
nodes.  Each node in the cluster runs all the services supported by the cluster and balances the 
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workload dynamically using the cluster membership information.  This architecture is more 
available, manageable, and scalable than traditional architecture. 

Electronic mail service is one of the most valuable services offered by the Internet. E-mail traffic 
will continue to increase in the near future, due to the explosion in the number of users on the 
Internet and the increase in the number of messages each user receives.  At present, sites such as 
AOL and Hotmail handle 10 million mail messages per day.  Such giant email clearinghouses 
will become commonplace, and the amount of mail each of them handles will also grow in the 
future. 

The goal of this project is to design and build an email server, called Porcupine, that can handle 
up to one billion messages a day from 10 million users, using a cluster of up to 1000 PCs. 
Porcupine takes advantage of today’s cheap PCs and fast interconnects to achieve this goal 
without massive hardware or management expense.  Porcupine treats the set of interconnected 
machines (the cluster) as one large server.  Unlike traditional mail architectures, each node in the 
cluster performs a portion of all the functions that the cluster offers.  For example, the mail user 
database is partitioned among nodes.  User mailboxes are also distributed, and user messages can 
be stored on any node at any time.  This design allows for high availability, high flexibility, and 
better load balancing. 

Porcupine is designed to be cheap, scalable, fast and easy to manage.  The simulation study 
shows that the system is indeed scalable, and failure recovery is not costly.  The system is being 
implemented on a cluster of Linux PCs.  In the next phase of the project, we plan to replicate 
both the user database and user mailboxes.  Replication algorithms are still being designed. In 
addition, we plan to introduce a recipient-specific mail processing language used for junk mail 
rejection or mailing list processing.  More information about Porcupine can be found at 
http://porcupine.cs.washington.edu. 
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